In 2009, supernovae were said to have been "pinned down" as a source of cosmic rays . This analysis, however, was disputed in 2011 with data from PAMELA, which revealed that "spectral shapes of [hydrogen and helium nuclei] are different and cannot be described well by a single power law", suggesting a more complex process of cosmic ray formation. In February 2013, though, research analyzing data from Fermi revealed through an observation of neutral pion decay that supernovae were indeed a source of cosmic rays, with each explosion producing roughly 3 × 1042 - 3 × 1043 J of cosmic rays. However, supernovae do not produce all cosmic rays, and the proportion of cosmic rays that they do produce is a question which cannot be answered without further study.
Friday, 1 August 2014
SOURCES OF COSMIC RAYS
In 2009, supernovae were said to have been "pinned down" as a source of cosmic rays . This analysis, however, was disputed in 2011 with data from PAMELA, which revealed that "spectral shapes of [hydrogen and helium nuclei] are different and cannot be described well by a single power law", suggesting a more complex process of cosmic ray formation. In February 2013, though, research analyzing data from Fermi revealed through an observation of neutral pion decay that supernovae were indeed a source of cosmic rays, with each explosion producing roughly 3 × 1042 - 3 × 1043 J of cosmic rays. However, supernovae do not produce all cosmic rays, and the proportion of cosmic rays that they do produce is a question which cannot be answered without further study.
0 comments:
Post a Comment